Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ping-Fan Wu, ${ }^{\text {a }}$ (Dong-Sheng Li, ${ }^{\text {a }}$ Xiang-Gao Meng, ${ }^{\text {b }}$ Xiao-Ling Zhong, ${ }^{\text {a }}$ Chao Jiang, ${ }^{\text {a }}$ Yu-Lin Zhu ${ }^{\text {c }}$ and Yong-Ge Wei ${ }^{\text {c* }}$
${ }^{\text {a }}$ Department of Food Sciences, College of Bioengineering, Hubei University of Technology, Wuhan 430068, People's Republic of China, ${ }^{\mathbf{b}}$ Department of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and ${ }^{\text {c Department }}$ of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail:
pingfanwu_111@yahoo.com.cn,
ygwei@pku.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.020$
$w R$ factor $=0.049$
Data-to-parameter ratio $=12.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Di- μ-oxo-bis[(histidinato- $\left.\kappa^{3} N, N, O\right)$ oxomolybdenum(V)] trihydrate

In the title dinuclear complex, $\left[\mathrm{Mo}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2} \mathrm{O}_{4}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, the Mo atoms, bridged by two μ-oxo atoms, have a distorted octahedral coordination environment. Besides the two bridging O atoms, the coordination of each Mo atom is completed by a terminal oxo atom and a tridentate histidinate ligand. The short Mo \cdots Mo distance of 2.5458 (4) \AA may indicate the existence of an Mo-Mo metal bond. Intermolecular hydrogen bonding between the uncoordinated carboxylate O atoms and amino groups leads to a layer-like arrangement of the molecules. The uncoordinated water molecules link these layers via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and help to stabilize the crystal packing.

Comment

Complexes of Mo^{V} ions with amino acids and polycarboxylic acids, including natural α-amino acids, have been intensively investigated since the 1960s (Spence \& Chang, 1963; Spence \& Lee, 1965; Kay \& Mitchell, 1968; Melby, 1969; Spence, 1969) because such compounds are potential models for understanding the action of Mo-containing enzymes, possible Moenzyme interactions and the function of molybdenum in biological systems (Spence, 1969; Hille, 1996). To date, many crystal structures of such compounds have been reported in the literature (Cotton et al., 1964; Knox \& Prout, 1968; Drew \& Kay, 1971; Delbaere \& Prout, 1971). However, only a few examples of α-amino acid molybdenum(V) complexes are known so far (Knox \& Prout, 1968; Bray \& Knowles, 1968; Liu et al., 2000). In this paper, we report the synthesis and crystal structure of the title histidine molybdenum(V) complex, (I), which was previously obtained by a different synthetic route and confirmed only by elemental analysis, IR and UV spectra, optical rotation, electron paramagnetic resonance, and proton magnetic resonance studies (Spence \& Lee, 1965; Melby, 1969).

Compound (I) was synthesized from an acidic aqueous solution containing $\left(\mathrm{NH}_{4}\right)_{6}\left[\mathrm{Mo}_{7} \mathrm{O}_{24}\right]$, L-histidine and $\mathrm{N}_{2} \mathrm{H}_{4} \cdot-$

Received 27 June 2005
Accepted 7 July 2005
Online 13 July 2005

- $3 \mathrm{H}_{2} \mathrm{O}$

Figure 1
A view of the title histidine molybdenum(V) complex, with the atomic numbering scheme, and with displacement ellipsoids at the 50% probability level. The solvent water molecules have been omitted for clarity.

2 HCl . It crystallizes in the non-centrosymmetric monoclinic space group $P 2_{1}$ with three water molecules in the asymmetric unit. The two Mo atoms in (I) have the same distorted octahedral coordination environment (Table 1), and they are bridged by two μ-oxo atoms to form a dinuclear coordination compound (Fig. 1). Besides the bridging O atoms, each Mo atom is coordinated by a terminal oxo atom and a histidinate, which acts as a tridentate chelating ligand through its amino N atom, one imidazolyl N atom and one carboxyl O atom.

The short Mo \cdots Mo distance of 2.5458 (4) \AA implies that there is an Mo-Mo bond between the two Mo atoms. According to bond-valence theory (Brown, 1981), the sum of the bond valences around Mo1 is 5.229 and that around Mo2 is 5.262 , in good agreement with the valence of Mo^{V}. However, as observed previously (Spence \& Lee, 1965), this compound is silent in electron paramagnetic resonance, which may be attributed to the formation of an Mo-Mo bond (Spence \& Lee, 1965; Melby, 1969). In general, the molecular structure of (I) is similar to that of the previously reported dinuclear molybdenum l-cysteinate (Knox \& Prout, 1969).

In the solid state, the solvent water molecules are aggregated into trimers via hydrogen bonding. The molecules of (I) form a two-dimensional layer-like arrangement parallel to the c axis via hydrogen-bond interactions between their uncoordinated carboxylic O atoms and the amino groups of neighbouring molecules. These layers are further linked through hydrogen bonding with the trimeric water molecules of crystallization to complete the whole three-dimensional crystal structure.

Experimental

$\left(\mathrm{NH}_{4}\right)_{6}\left[\mathrm{Mo}_{7} \mathrm{O}_{24}\right](1.25 \mathrm{~g}, 1.0 \mathrm{mmol})$, L-histidine $(0.46 \mathrm{~g} \mathrm{~g}, 3.0 \mathrm{mmol})$ and hydrazine hydrochloride ($0.13 \mathrm{~g}, 1.25 \mathrm{mmol}$) were added to $\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{ml})$ and stirred to give a mixture of $\mathrm{pH}=3-4$. Monoclinic blocklike yellow crystals of (I) of X-ray quality were deposited within 3 d in about 60% yield. This product is insoluble in common solvents such
as water, ethanol, ethyl acetate, chloroform and acetone, but is readily soluble in N, N-dimethylformamide and dimethylsulfoxide, All chemicals used were of analytical purity and obtained from commercial sources. Spectroscopic analysis: IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-}$): 3400 (m, OH), 3253, $3135(m, \mathrm{NH}), 1638,1599(s, \mathrm{COO}), 1437\left(m, \mathrm{CH}_{2}\right)$, 1396 (m), 1381 (m), 1107 (s), 947 ($v s, \mathrm{MO}$), $920(s), 755$ (s, MoOMo), 714 (s).

Crystal data

$\left[\mathrm{Mo}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2} \mathrm{O}_{4}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=618.24$
Monoclinic, $P 2_{1}$
$a=10.9594$ (12) A
$b=8.7222$ (9) \AA
$c=11.5783(12) \AA$
$\beta=113.136$ (2) ${ }^{\circ}$
$V=1017.76(19) \AA^{3}$
$Z=2$
$D_{x}=2.017 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5483
\quad reflections
$\theta=3.0-28.3^{\circ}$
$\mu=1.30 \mathrm{~mm}^{-1}$
$T=292(2) \mathrm{K}$
Block, yellow
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.696, T_{\text {max }}=0.781$
5964 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.049$
$S=1.13$
3372 reflections
280 parameters
H -atom parameters constrained

$$
\begin{aligned}
& 3372 \text { independent reflections } \\
& 3343 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.019 \\
& \theta_{\max }=27.0^{\circ} \\
& h=-13 \rightarrow 13 \\
& k=-5 \rightarrow 11 \\
& l=-12 \rightarrow 14
\end{aligned}
$$

$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0218 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.33 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.69 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
with 1006 Friedel pairs
Flack parameter: 0.03 (3)

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

Mo1-O8	$1.695(2)$	Mo2-O7	$1.701(3)$
Mo1-O6	$1.9347(19)$	Mo2-O6	$1.9286(19)$
Mo1-O5	$1.9470(19)$	Mo2-O5	$1.932(2)$
Mo1-O2	$2.205(2)$	Mo2-O4	$2.201(2)$
Mo1-N1	$2.210(2)$	Mo2-N6	$2.219(2)$
Mo1-N3	$2.242(2)$	Mo2-N4	$2.228(2)$
Mo1-Mo2	$2.5458(4)$		
Mo2-O5-Mo1	$82.03(8)$	Mo2-O6-Mo1	$82.44(7)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 9-\mathrm{H} 9 A \cdots \mathrm{O} 1^{\text {i }}$	0.85	1.89	2.716 (3)	163
$\mathrm{O} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O} 10$	0.85	2.22	2.885 (4)	136
$\mathrm{O} 10-\mathrm{H} 10 \mathrm{C} \cdots \mathrm{O} 11^{\text {ii }}$	0.85	2.00	2.844 (4)	170
$\mathrm{O} 10-\mathrm{H} 10 \mathrm{D} \cdots \mathrm{O} 5$	0.85	2.34	3.056 (4)	142
$\mathrm{O} 11-\mathrm{H} 11 A \cdots \mathrm{O} 3^{\text {iii }}$	0.85	1.91	2.724 (4)	159
$\mathrm{O} 11-\mathrm{H} 11 \mathrm{~B} \cdots \mathrm{O} 7$	0.85	2.41	3.148 (4)	145
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 9^{\text {iv }}$	0.86	1.88	2.735 (4)	177
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{1}$	0.90	2.21	2.944 (3)	139
$\mathrm{N} 3-\mathrm{H} 3 B \cdots \mathrm{O} 10^{\mathrm{i}}$	0.90	2.18	3.077 (4)	178
N5-H5 . ${ }^{\text {O } 111^{v}}$	0.86	2.03	2.869 (3)	165
$\mathrm{N} 6-\mathrm{H} 64 \cdots \mathrm{O} 7^{\mathrm{vi}}$	0.90	2.34	3.091 (4)	141
$\mathrm{N} 6-\mathrm{H} 6 B \cdots \mathrm{O} 2^{\text {vii }}$	0.90	2.47	3.150 (3)	133

Symmetry codes: (i) $-x+2, y+\frac{1}{2},-z+1$; (ii) $x, y-1, z$; (iii) $x, y+1, z$; (iv) $x, y, z+1$;
(v) $-x+1, y-\frac{1}{2},-z$; (vi) $-x+1, y-\frac{1}{2},-z+1$; (vii) $-x+1, y+\frac{1}{2},-z+1$.

metal-organic papers

All H atoms were positioned geometrically and refined as riding, with $\mathrm{O}-\mathrm{H}=0.85 \AA, \mathrm{~N}-\mathrm{H}=0.86-0.90 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ constrained to be $1.2 U_{\text {eq }}$ of the parent atom.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2003); software used to prepare material for publication: SHELXTL.

This work was sponsored by the Natural Science Foundation of China (grant No. 20373001) and supported by funding from Hubei University of Technology.

References

Bray, R. C. \& Knowles, P. F. (1968). Proc. R. Soc. Ser. A, 302, 351-353.

Brown, I. D. (1981). Structure and Bonding in Crystals, Vol. 2, ch. 14, pp. 1-30. New York: Academic Press.
Bruker (2003). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Cotton, F. A., Morehouse, S. M. \& Wood, J. S. (1964). Inorg. Chem. 3, 16031608.

Delbaere, L. T. J. \& Prout, C. K. (1971). J. Chem. Soc. D, p. 162.
Drew, M. G. B. \& Kay, A. (1971). J. Chem. Soc. A, pp. 1846-1850.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hille, R. (1996). Chem. Rev. 96, 2757-2816.
Kay, A. \& Mitchell, P. C. H. (1968). Nature, 219, 267.
Knox, J. R. \& Prout, C. K. (1968). J. Chem. Soc. Chem. Commun. pp. 12271228.

Knox, J. R. \& Prout, C. K. (1969). Acta Cryst. B25, 1857-1866.
Liu, G., Liu, J., Wei, Y.-G., Liu Q., Zhang, S.-W. (2000). Acta Cryst. C56, 822823.

Melby, I. R. (1969). Inorg. Chem. 8, 349, 1539.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spence, J. T. (1969). Coord. Chem. Rev. 4, 475-498.
Spence, J. T. \& Chang, H. H. Y. (1963). Inorg. Chem. 2, 319.
Spence, J. T. \& Lee, J. Y. (1965). Inorg. Chem. 4, 385.

