Received 27 June 2005 Accepted 7 July 2005

Online 13 July 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ping-Fan Wu,^a* Dong-Sheng Li,^a Xiang-Gao Meng,^b Xiao-Ling Zhong,^a Chao Jiang,^a Yu-Lin Zhu^c and Yong-Ge Wei^c*

^aDepartment of Food Sciences, College of Bioengineering, Hubei University of Technology, Wuhan 430068, People's Republic of China, ^bDepartment of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and ^cDepartment of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail: pingfanwu_111@yahoo.com.cn, ygwei@pku.edu.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.020 wR factor = 0.049 Data-to-parameter ratio = 12.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Di- μ -oxo-bis[(histidinato- $\kappa^3 N, N, O$)oxomolybdenum(V)] trihydrate

In the title dinuclear complex, $[Mo_2(C_6H_8N_3O_2)_2O_4]\cdot 3H_2O$, the Mo atoms, bridged by two μ -oxo atoms, have a distorted octahedral coordination environment. Besides the two bridging O atoms, the coordination of each Mo atom is completed by a terminal oxo atom and a tridentate histidinate ligand. The short Mo···Mo distance of 2.5458 (4) Å may indicate the existence of an Mo–Mo metal bond. Intermolecular hydrogen bonding between the uncoordinated carboxylate O atoms and amino groups leads to a layer-like arrangement of the molecules. The uncoordinated water molecules link these layers *via* O–H···O hydrogen bonds and help to stabilize the crystal packing.

Comment

Complexes of Mo^V ions with amino acids and polycarboxylic acids, including natural α -amino acids, have been intensively investigated since the 1960s (Spence & Chang, 1963; Spence & Lee, 1965; Kay & Mitchell, 1968; Melby, 1969; Spence, 1969) because such compounds are potential models for understanding the action of Mo-containing enzymes, possible Moenzyme interactions and the function of molybdenum in biological systems (Spence, 1969; Hille, 1996). To date, many crystal structures of such compounds have been reported in the literature (Cotton et al., 1964; Knox & Prout, 1968; Drew & Kay, 1971; Delbaere & Prout, 1971). However, only a few examples of α -amino acid molybdenum(V) complexes are known so far (Knox & Prout, 1968; Bray & Knowles, 1968; Liu et al., 2000). In this paper, we report the synthesis and crystal structure of the title histidine molybdenum(V) complex, (I), which was previously obtained by a different synthetic route and confirmed only by elemental analysis, IR and UV spectra, optical rotation, electron paramagnetic resonance, and proton magnetic resonance studies (Spence & Lee, 1965; Melby, 1969).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Compound (I) was synthesized from an acidic aqueous solution containing $(NH_4)_6[MO_7O_{24}]$, L-histidine and N_2H_4 -

A view of the title histidine molybdenum(V) complex, with the atomic numbering scheme, and with displacement ellipsoids at the 50% probability level. The solvent water molecules have been omitted for clarity.

2HCl. It crystallizes in the non-centrosymmetric monoclinic space group $P2_1$ with three water molecules in the asymmetric unit. The two Mo atoms in (I) have the same distorted octahedral coordination environment (Table 1), and they are bridged by two μ -oxo atoms to form a dinuclear coordination compound (Fig. 1). Besides the bridging O atoms, each Mo atom is coordinated by a terminal oxo atom and a histidinate, which acts as a tridentate chelating ligand through its amino N atom, one imidazolyl N atom and one carboxyl O atom.

The short Mo···Mo distance of 2.5458 (4) Å implies that there is an Mo-Mo bond between the two Mo atoms. According to bond-valence theory (Brown, 1981), the sum of the bond valences around Mo1 is 5.229 and that around Mo2 is 5.262, in good agreement with the valence of Mo^V. However, as observed previously (Spence & Lee, 1965), this compound is silent in electron paramagnetic resonance, which may be attributed to the formation of an Mo-Mo bond (Spence & Lee, 1965; Melby, 1969). In general, the molecular structure of (I) is similar to that of the previously reported dinuclear molybdenum L-cysteinate (Knox & Prout, 1969).

In the solid state, the solvent water molecules are aggregated into trimers via hydrogen bonding. The molecules of (I) form a two-dimensional layer-like arrangement parallel to the c axis via hydrogen-bond interactions between their uncoordinated carboxylic O atoms and the amino groups of neighbouring molecules. These layers are further linked through hydrogen bonding with the trimeric water molecules of crystallization to complete the whole three-dimensional crystal structure.

Experimental

(NH₄)₆[Mo₇O₂₄] (1.25 g, 1.0 mmol), L-histidine (0.46 g g, 3.0 mmol) and hydrazine hydrochloride (0.13 g, 1.25 mmol) were added to H₂O (20 ml) and stirred to give a mixture of pH = 3-4. Monoclinic blocklike yellow crystals of (I) of X-ray quality were deposited within 3 d in about 60% yield. This product is insoluble in common solvents such as water, ethanol, ethyl acetate, chloroform and acetone, but is readily soluble in N,N-dimethylformamide and dimethylsulfoxide, All chemicals used were of analytical purity and obtained from commercial sources. Spectroscopic analysis: IR (KBr, v, cm⁻): 3400 (m, OH), 3253, 3135 (m, NH), 1638, 1599 (s, COO), 1437 (m, CH₂), 1396 (m), 1381 (m),1107 (s), 947 (vs, MO), 920 (s), 755 (s, MoOMo), 714 (s).

 $D_x = 2.017 \text{ Mg m}^{-3}$

Cell parameters from 5483

3372 independent reflections

3343 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections $\theta = 3.0 - 28.3^{\circ}$

 $\mu=1.30~\mathrm{mm}^{-1}$

T = 292 (2) K

Block, yellow

 $R_{\rm int} = 0.019$

 $\theta_{\text{max}} = 27.0^{\circ}$ $h = -13 \rightarrow 13$

 $k = -5 \rightarrow 11$ $l = -12 \rightarrow 14$

 $0.3 \times 0.2 \times 0.2$ mm

Crystal data

[Mo₂(C₆H₈N₃O₂)₂O₄]·3H₂O M = 618.24Monoclinic, P21 a = 10.9594 (12) Åb = 8.7222 (9) Å c = 11.5783 (12) Å $\beta = 113.136 (2)^{\circ}$ $V = 1017.76 (19) \text{ Å}^3$ Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.696, T_{\rm max} = 0.781$ 5964 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0218P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.020$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.049$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.13	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
3372 reflections	$\Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$
280 parameters	Absolute structure: Flack (1983),
H-atom parameters constrained	with 1006 Friedel pairs
	Flack parameter: 0.03 (3)

Table 1

Selected geometric parameters (Å, °).

Mo1-O8	1.695 (2)	Mo2-O7	1.701 (3)
Mo1-O6	1.9347 (19)	Mo2-O6	1.9286 (19)
Mo1-O5	1.9470 (19)	Mo2-O5	1.932 (2)
Mo1-O2	2.205 (2)	Mo2-O4	2.201 (2)
Mo1-N1	2.210 (2)	Mo2-N6	2.219 (2)
Mo1-N3	2.242 (2)	Mo2-N4	2.228 (2)
Mo1-Mo2	2.5458 (4)		
Mo2-O5-Mo1	82.03 (8)	Mo2-O6-Mo1	82.44 (7)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

,				
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O9-H9A\cdotsO1^{i}$	0.85	1.89	2.716 (3)	163
O9−H9 <i>B</i> ···O10	0.85	2.22	2.885 (4)	136
$O10-H10C \cdot \cdot \cdot O11^{ii}$	0.85	2.00	2.844 (4)	170
$O10-H10D\cdots O5$	0.85	2.34	3.056 (4)	142
$O11 - H11A \cdots O3^{iii}$	0.85	1.91	2.724 (4)	159
$O11 - H11B \cdots O7$	0.85	2.41	3.148 (4)	145
$N2-H2\cdots O9^{iv}$	0.86	1.88	2.735 (4)	177
$N3-H3A\cdotsO1^{i}$	0.90	2.21	2.944 (3)	139
$N3-H3B\cdotsO10^{i}$	0.90	2.18	3.077 (4)	178
$N5-H5\cdots O11^{v}$	0.86	2.03	2.869 (3)	165
$N6-H6A\cdots O7^{vi}$	0.90	2.34	3.091 (4)	141
$N6-H6B\cdots O2^{vii}$	0.90	2.47	3.150 (3)	133

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, -z + 1; (ii) x, y - 1, z; (iii) x, y + 1, z; (iv) x, y, z + 1; (v) -x + 1, $y - \frac{1}{2}$, -z; (vi) $-x + \tilde{1}$, $y - \frac{1}{2}$, -z + 1; (vii) -x + 1, $y + \frac{1}{2}$, -z + 1.

All H atoms were positioned geometrically and refined as riding, with O-H = 0.85 Å, N-H = 0.86–0.90 Å and C-H = 0.93–0.98 Å, and with $U_{\rm iso}({\rm H})$ constrained to be $1.2U_{\rm eq}$ of the parent atom.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2003); software used to prepare material for publication: *SHELXTL*.

This work was sponsored by the Natural Science Foundation of China (grant No. 20373001) and supported by funding from Hubei University of Technology.

References

Bray, R. C. & Knowles, P. F. (1968). Proc. R. Soc. Ser. A, 302, 351-353.

- Brown, I. D. (1981). *Structure and Bonding in Crystals*, Vol. 2, ch. 14, pp. 1–30. New York: Academic Press.
- Bruker (2003). *SMART, SAINT* and *SHELXTL*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cotton, F. A., Morehouse, S. M. & Wood, J. S. (1964). *Inorg. Chem.* **3**, 1603–1608.
- Delbaere, L. T. J. & Prout, C. K. (1971). J. Chem. Soc. D, p. 162.
- Drew, M. G. B. & Kay, A. (1971). J. Chem. Soc. A, pp. 1846-1850.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hille, R. (1996). Chem. Rev. 96, 2757-2816.
- Kay, A. & Mitchell, P. C. H. (1968). Nature, 219, 267.
- Knox, J. R. & Prout, C. K. (1968). J. Chem. Soc. Chem. Commun. pp. 1227– 1228.
- Knox, J. R. & Prout, C. K. (1969). Acta Cryst. B25, 1857-1866.
- Liu, G., Liu, J., Wei, Y.-G., Liu Q., Zhang, S.-W. (2000). Acta Cryst. C56, 822–823.
- Melby, I. R. (1969). Inorg. Chem. 8, 349, 1539.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spence, J. T. (1969). Coord. Chem. Rev. 4, 475-498.
- Spence, J. T. & Chang, H. H. Y. (1963). Inorg. Chem. 2, 319.
- Spence, J. T. & Lee, J. Y. (1965). Inorg. Chem. 4, 385.